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Matrices - Introduction

> Collection of mx» numbers or functions in form of m horizonal lines and n vertical lines is called a
matrix of order m by n or mxn

> A mxn matrix A may be written as
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Matrices - Introduction

Some examples of matrices of different orders

1 2 4
3X3 matrix 4 -1 5
3 3 3
12 1 3 =-3]
2X4 matrix
00 3 2

1x2 matrix []_ —1]



Matrices - Introduction

TYPES OF MATRICES

1. Column matrix or vector: The number of rows may be any integer, but the
number of columns is always 1

1 4 Ay

A 1 Ay,

2 =3 ‘
- _aml




Matrices - Introduction

TYPES OF MATRICES

2. Row matrix or vector: Any number of columns but only one row

1 1 6] [0352]

[all A, Az aln]



Matrices - Introduction

TYPES OF MATRICES

3. Rectangular matrix

Contains more than one element and number of rows is not equal to the number of columns

1 1 - _
- 11100
. .| |2 0330
_76_

m = N



Matrices - Introduction
TYPES OF MATRICES

4. Square matrix
The number of rows is equal to the number of columns

(a square matrix A has an order of m)

1 11 [1 1 1

9 9 0
3 0
R

The principal or main diagonal of a square matrix is composed of all
elements a; for which 1=



Matrices - Introduction

TYPES OF MATRICES

5. Diagonal matrix

A square matrix where all the elements are zero except those on the main diagonal

) ) 3000
1 00 0 3 0 0
0 2 0 0 050

0 0 1 000 9

i-e-; aij =0 for all I#j

a; # 0 for some or all i = |



Matrices - Introduction
TYPES OF MATRICES

6. Unit or Identity matrix - |

A diagonal matrix with ones on the main diagonal

100 0

0 10 0| [1 O] [a
0010 |0 1] |o0
oo0oo0 1

i.e. a; =0 forall i #]

a; = 1 for some or all i =




Matrices - Introduction

TYPES OF MATRICES

All elements In the matrix are zero

0 0 0 0
0 0 0 0
0

L= 000

aij =0 For all i,



Matrices - Introduction

TYPES OF MATRICES

A sguare matrix whose elements above or below the main
diagonal are all zero

1 0 O 1 8 9
1 0 0 1 6
! 3 0 0 3




Matrices - Introduction

TYPES OF MATRICES

A sguare matrix whose elements below the main
diagonal are all zero

l.e.a; =0 foralli>]

- 1 1

d; QA 9y 1 8 7 0

0 A & 0 1 8 0
0 0 & 0 0 3

- - = 0

o O -

O N N B

w o0 B~ b




Matrices - Introduction

TYPES OF MATRICES

A square matrix whose elements above the main diagonal are all
Zero

a, 0 0 1 0 0
a; a O 2 1 0
Y 5 2 3

l.e.a; =0 foralli<]



Matrices — Introduction
TYPES OF MATRICES

A diagonal matrix whose main diagonal elements are
equal to the same scalar

A scalar is defined as a single number or constant

a, 0 0] 1L 0 0] [6 0
0 & O 0 1 0 0 6
0 0 a| (00 1] |4 (o
i.e.a; =0 forall i =] 0 0

a; =aforalli=

o O O O
o O O O




Matrices - Operations

EQUALITY OF MATRICES

Two matrices are said to be equal only when all
corresponding elements are equal

Therefore their size or dimensions are equal as well

or Np B
N b O
w O O
or Np B
N b O
w O O




Matrices - Operations

Some properties of equality:
If A=B,thenB=A
Iff A=B,and B=C,then A=C forall A,Band C

N b O
w O O
o
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If A =B then aij




Matrices - Operations

ADDITION AND SUBTRACTION OF MATRICES

The sum or difference of two matrices, A and B of the same
size yields a matrix C of the same size

C; =a; + bij

Matrices of different sizes cannot be added or subtracted



Matrices - Operations

Commutative Law:
A+B=B+A

Assoclative Law:
A+(B+C)=(A+B)+C=A+B+C

7 3 -1 [1 5 6] [8 8
2 -5 6| |-4 -2 3| |-2 -7

%3 2X3 2X3




Matrices - Operations

A+0=0+A=A

A + (-A) = 0 (where —A Is the matrix composed of —a;; as elements)

6 4 2| [1 2 0| [5 2 2
3 2 /7| |1 0 8 2 2 -1




Matrices - Operations

SCALAR MULTIPLICATION OF MATRICES

Matrices can be multiplied by a scalar (constant or single
element)
Let k be a scalar quantity; then

KA = Ak

5 =
2 1
2 =3
4 1

Ex. If k=4 and




Matrices - Operations

11
1
4 x
-3
1 —
Properties:

k (A+B)=KA+KkB
* (k +g)A =kA +gA

x4 =

+ K(AB) = (kA)B = A(k)B

* K(gA) = (kg)A

12
8
8

16

—4
4
-12
4




Matrices - Operations

MULTIPLICATION OF MATRICES

The product of two matrices is another matrix

Two matrices A and B must be for multiplication to
be possible

I.e. the number of columns of A must equal the number of rows
of B

Example.
A x B = ~C
(1x3) (3x1) (1x1)



Matrices - Operations

B x A = Notpossible!
(2x1) (4x2)

A x B = Not possible!
(6x2) (6X3)

Example
A X B = C
(2x3) (3x2) (2x2)



Matrices - Operations

P S T O} N
d; &y A3 |G G
o1 Dy | =
Ay Ay Ay 3 Ci Cyp
D3 Dy

(8, xByy) + (8, X0y ) + (a3 %0y ) =€
(& xby,) + (8, X0y,) + (835 xb,) =€y,
(8 xByy) + (8, x by ) + (8 xDy) =€,
(ay xby,) + (8, xD,,) + (a3 xby,) =C,,

Successive multiplication of row i of A with column j of
B — row by column multiplication




Matrices - Operations

1 2 3 g 2_ (Ix4)+(2x6)+(3x5) (Ax8)+(2x2)+(3x3)
42 7), | (4x4)+(2x6)+(7Tx5) (4x8)+(2x2)+(7x3)
__31 21
|63 57
Remember also:
IA=A
I 1131 21 31 21]

0 1| |63 57 63 57!



Matrices - Operations

Assuming that matrices A, B and C are conformable for
the operations indicated, the following are true:

1. AI=1A=A

2. A(BC)=(AB)C = ABC - (associative law)

3. A(B+C)=AB + AC - (first distributive law)
4. (A+B)C = AC +BC - (second distributive law)
Caution!

1. AB not generally equal to BA, BA may not be conformable
2. If AB =0, neither A nor B necessarily =0
3. If AB = AC, B not necessarily = C



Matrices - Operations

AB not generally equal to BA, BA may not be conformable

1 2
T =

_5 O_

-
S =

_O 2_

1 23 4] [3 8]
TS = —

5 00 2| |15 20

'3 4|1 2| [23 6]
ST = —

0 2|5 0| |10 O




Matrices - Operations

If AB =0, neither A nor B necessarily =0

1 1) 2 3 0 O
-2 -3| |0 0




Matrices - Operations

TRANSPOSE OF A MATRIX

If: _ _
A =

L i

Then transpose of A, denoted AT is:
CS

A' =4 3

_7 1_

3x2

ad. =ad: For all i1 and |



Matrices - Operations

Properties of transposed matrices:
1. (A+B)T=AT+ BT

2. (AB)T=BTAT

3. (KA)T = kAT

4. (ANT=A



|

Matrices - Operations

1. (A+B)T=AT+ BT

7 3
2 -5 06

o)

1

[ 2
3 5|+
__1 6 — -

1

5 6
—4 -2 3

—4
~2

H

8 8 5
—2 -7 9

8 -2
8 —7
5 9

}_.

8 -2
8 —7
5 9




Matrices - Operations

(AB)T = BT AT
_ (1]
1 1 O 2
1|= :>[2 8]
| 3_ 2 _8_




Matrices - Operations

SYMMETRIC MATRICES

A Square matrix Is symmetric If it is equal to its
transpose:

A= AT
b

A:

AT :_a b |




Matrices - Operations

When the original matrix Is square, transposition does not
affect the elements of the main diagonal

S
_C d_

A=

Al =

P
The 1dentity matrix, I, a diagonal matrix D, and a scalar matrix, K,
are equal to their transpose since the diagonal is unaffected.



Matrices - Operations

INVERSE OF A MATRIX

Consider a scalar k. The inverse is the reciprocal or division of 1
by the scalar.

Example:
k=7 theinverseof kork!=1/k=1/7

Division of matrices is not defined since there may be AB = AC
while B # C

Instead matrix inversion IS used.

The inverse of a square matrix, A, If it exists, Is the unique matrix
Al where:

AAl =A1A=



Matrices - Operations

Example: ~ _
3
A=
_2 —_
a1 T
Because: 1 173 1___1 0
-2 3|2 1] |0 1
311 -1] [1 O
2 1/-2 3| |0 1




Matrices - Operations

Properties of the inverse:

(AB)*=BA™
(A=A
(AT)—l _ (A—l)T
1 E -1
(kA" =+ A

A square matrix that has an inverse is called a nonsingular matrix
A matrix that does not have an inverse is called a singular matrix
Square matrices have inverses except when the determinant is zero

When the determinant of a matrix is zero the matrix is singular



Matrices - Operations

DETERMINANT OF A MATRIX

To compute the inverse of a matrix, the determinant is required

Each square matrix A has a unit scalar value called the
determinant of A, denoted by det A or |A|

1 2
If A=

6 5
then ‘A‘:é é




Matrices - Operations

If A =[A] Isasingle element (1x1), then the determinant is
defined as the value of the element

Then |A| =det A = a,,

If A is (n X n), its determinant may be defined in terms of order
(n-1) or less.



Matrices - Operations

MINORS
If A IS an n x n matrix and one row and one column are deleted,

the resulting matrix is an (n-1) x (n-1) submatrix of A.

The determinant of such a submatrix is called a minor of A and
Is designated by m;; , where 1 and  correspond to the deleted

row and column, respectively.

m;; Is the minor of the element a;; In A.



Matrices - Operations

eq.
) 8, a, ag
A= dyy dy Ay

dj 83 Agg |

Each element in A has a minor
Delete first row and column from A .

The determinant of the remaining 2 x 2 submatrix is the minor
of a,

a22 a23

m,, =
11
dy, dag




Matrices - Operations

Therefore the minor of a,, Is:
a‘21 a23

Mm,. =
12
dy;  dgg

And the minor for a,; Is:

d,, dy
M, =

a31 a32



Matrices - Operations
COFACTORS

The cofactor C;; of an element a;; Is defined as:

Cij — (_1)I+J mij

When the sum of a row number I and column j is even, ¢; = m;; and
When |+J |S Odd, Clj :'mij

c,(1=1]=1)= (_1)1+1 My =+My
C,(1=1]=2)= (_1)1+2 M, =—My,

Ci(1=1J=3)= (_1)1+3 My = +My,



Matrices - Operations

DETERMINANTS CONTINUED

The determinant of an n x n matrix A can now be defined as
Al=det A=a,,C;, +a,,C;, +...+&,C,

The determinant of A is therefore the sum of the products of the
elements of the first row of A and their corresponding cofactors.

(It i1s possible to define |A| in terms of any other row or column
but for simplicity, the first row only is used)



Matrices - Operations

Therefore the 2 X 2 matrix :

dy; Ay
_a21 a'22 i

A=

Has cofactors :
ChL=My = ‘azz‘ = dy,

And:
" Cp, =—My, = _‘a21‘ = —dy

And the determinant of A Is:

‘A‘ = ay;Cyy + 5,6, =aa,, —a,a,



Matrices - Operations

Example 1. ) )
3 1
_l 2_
A=3)(2)-DO) =5

A=




Matrices - Operations

For a 3 X 3 matrix:

d, d;,
A= dyy dy, dy
dy; A3 dgg
The cofactors of the first row are:
d,, Ay
C1 = = Ay,a33 — ay3ds,
dj, dgg
dy; Ay
Cpp =— — _(321333 — az3a31)
dj; dgg
dy,y dy
Ci3 = = @y dg, —85,dy
d;;  dg




Matrices - Operations

The determinant of a matrix A Is:
‘A‘ = ay;Cyy + 5,6, =aa,, —a,a,
Which by substituting for the cofactors in this case is:

‘A‘ = a,; (2,853 — Ay, ) — Ay, (2855 —8y385,) +3y5(Ay 35, —aa5 )



Matrices - Operations

Example 2: )
1

A= 0

-1

o N O

.
3
1_

‘A‘ = a,; (8,853 — Ay, ) — Ay, (2855 —8y385,) +3y5(Ay 35, — a5 )

A= (1)(2-0)-(0)(0+3)+(1)(0+2) =4



Matrices - Operations

ADJOINT MATRICES

A cofactor matrix C of a matrix A is the square matrix of the same
order as A in which each element a; Is replaced by its cofactor c;; .

Example:

If A=

12
__3 4_

4 3
-2 1

The cofactor Cof Ais C =




Matrices - Operations

The adjoint matrix of A, denoted by adj A, is the transpose of its

cofactor matrix
adjA=C'

It can be shown that:
A(adj A) = (adjA) A =|A| |

Example: "1 2]
A:
__3 4_
Al=D(4)-(2)(-3)=10
I I
ad]A=C =
_3 1 —




Matrices - Operations

| 1 24 -2] [10 O
A(adJA){—s 4}{3 1}{0 10}:1OI

. 4 -2T1 2] [10 0
(adjA) A = - =10
3 1]-3 4] |0 10




Matrices - Operations

USING THE ADJOINT MATRIX IN MATRIX INVERSION

Since
AAL1l = A1A=|

and
A(adj A) = (adjA) A= |A| |

then
~adjA

At =
A



Matrices - Operations

Example

To check

AA™ =

A7A=

A {1 2 |

-3 4
1[4 -2] [o04
10{3 1| |03
AAT =A1A=|
1 2[04 -0.2]
-3 403 01
04 -021 2
03 01 [-3 4

-0.2
0.1




Matrices - Operations

Example 2 ) )
3 -1 1
A=2 1 O

1 2 -1

The determinant of A is
Al = (3)(-1-0)-(-1)(-2-0)+(1)(4-1) = -2
The elements of the cofactor matrix are
c,, =+(-1), C, =—(—2), C,, =+(3),
c,, =—(-1), C,, =+(—4), C,s =—(7),
Cy =+(-1), C;, =—(-2), Cy, =+(5),



Matrices - Operations

The cofactor matrix is therefore

-1

C=|1

-1

SO r

adjA=C' =
and

Al adjA 1

A -2

2
—4

3
7

05 -05 05°
-10 20 -10
15 35 -25




Matrices - Operations

The result can be checked using
AAL = ATA=

The determinant of a matrix must not be zero for the inverse to
exist as there will not be a solution

Nonsingular matrices have non-zero determinants

Singular matrices have zero determinants



Matrix Inversion

Simple 2 x 2 case



Simple 2 x 2 case

Let
2 b and

A= A=
C

Since 1t Is known that
AAl=]|

then




Simple 2 x 2 case

Multiplying gives
aw+ by =1
ax+bz=0
cw+dy=0
cx+dz=1

It can simply be shown that
|Al=ad —hbc



Simple 2 x 2 case

thus




Simple 2 x 2 case




Simple 2 x 2 case




Simple 2 x 2 case

—bz
X=——




Simple 2 x 2 case

So that for a 2 x 2 matrix the inverse can be constructed

In a simple fashion as

A—l

d b
A A
-C a

*Exchange elements of main diagonal

*Change sign in elements off main diagonal

Divide resulting matrix by the determinant




Simple 2 x 2 case

Example
2 3
A —
_4 1_
A—lz_i_ 1 —3_:_—0.1
10/-4 2| | 04

Check Inverse
Al A=|

111 -3
10(-4 2 |4 1

0.3
—0.2




Matrices and
Linear Equations




Linear Equations

Linear equations are common and important for survey
problems

Matrices can be used to express these linear equations and
aid in the computation of unknown values

Example

n equations in n unknowns, the a; are numerical coefficients,
the b; are constants and the x; are unknowns

A Xy X, o+ X, = b1
&, X +a,X, +--+a, X =D,

n

a X, +a,X +--+a X =Db

n



Linear Equations

The equations may be expressed in the form

AX =B
where
dj; gy A, X
A — dyy Gyt Gy, X — X5 -
_anl o A R P i _Xn |
NXnN n X 1

Number of unknowns = number of equations = n




Linear Equations

If the determinant is nonzero, the equation can be solved to produce
n numerical values for x that satisfy all the simultaneous equations

To solve, premultiply both sides of the equation by At which exists
because |A| £ 0

Al1AX=A1B
Now since
AlA=1I
We get
J X=A1lB

So if the inverse of the coefficient matrix i1s found, the unknowns,
X would be determined



Linear Equations

Example

X, — Xy + X3 =2

2%, +X, =1

X, +2X, — Xy =3

The equations can be expressed as

3
2
1

-1 1
1 0
2 -1




Linear Equations

When A is computed the equation becomes

05 -05 0572
X=A'B=/-10 20 -1.0
-15 35 -25|3

Therefore
2,

X, =—3,
X =—1

X1

N




Linear Equations

The values for the unknowns should be checked by substitution
back into the initial equations

X, =2, X, — Xy + X3 =2
X, = —3, 2%, +X, =1
X, =—7 X, +2X, — Xy =3

3x(2)—(-3)+(-7)=2
2x(2)+(-3)=1
(2)+2x(-3)—(-7)=3
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