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PART A: MATRICES



Matrices - Introduction
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➢ Collection of            numbers or functions in form of m horizonal lines and n vertical lines is called a 

matrix of order m by n or

➢ A            matrix A may be written as

𝑚 × 𝑛

𝑚 × 𝑛

𝑚 × 𝑛

 Clearly              matrix has  m rows and n column

 The row suffix    goes from 1 to    while the column suffix takes values from 1 to 

𝑚 × 𝑛

𝑖 𝑚 𝑛



Matrices - Introduction

Some examples of matrices of different orders

3x3 matrix

2x4 matrix

1x2 matrix
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TYPES OF MATRICES

1. Column matrix or vector: The number of rows may be any integer, but the 

number of columns is always 1
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TYPES OF MATRICES

2. Row matrix or vector: Any number of columns but only one row

 611  2530

 naaaa 1131211 
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TYPES OF MATRICES

3. Rectangular matrix

Contains more than one element and number of rows is not equal to the number of columns
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TYPES OF MATRICES

4. Square matrix

The number of rows is equal to the number of columns

(a square matrix  A   has an order of m)
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The principal or main diagonal of a square matrix is composed of all 

elements aij for which i=j
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TYPES OF MATRICES

5. Diagonal matrix

A square matrix where all the elements are zero except those on the main diagonal
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i.e., aij =0 for all i = j

aij = 0 for some or all i = j
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TYPES OF MATRICES

6. Unit or Identity matrix - I

A diagonal matrix with ones on the main diagonal
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TYPES OF MATRICES

7. Null (zero) matrix - 0

All elements in the matrix are zero
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TYPES OF MATRICES

8. Triangular matrix

A square matrix whose elements above or below the main 

diagonal are all zero
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TYPES OF MATRICES

8a. Upper triangular matrix

A square matrix whose elements below the main 

diagonal are all zero

i.e. aij = 0 for all i > j
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TYPES OF MATRICES

A square matrix whose elements above the main diagonal are all 

zero

8b. Lower triangular matrix

i.e. aij = 0 for all i < j
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TYPES OF MATRICES

9. Scalar matrix

A diagonal matrix whose main diagonal elements are 

equal to the same scalar

A scalar is defined as a single number or constant
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EQUALITY OF MATRICES

Two matrices are said to be equal only when all 

corresponding elements are equal

Therefore their size or dimensions are equal as well
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A = B = A = B
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Some properties of equality:

•If A = B, then B = A

•If A = B, and B = C, then A = C for all A, B and C




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



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


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001
A = B =


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333231
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If A = B then 
ijij ba =
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ADDITION AND SUBTRACTION OF MATRICES

The sum or difference of two matrices, A and B of the same 

size yields a matrix C of the same size

ijijij bac +=

Matrices of different sizes cannot be added or subtracted
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Commutative Law:

A + B = B + A

Associative Law:

A + (B + C) = (A + B) + C = A + B + C
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
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972
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651
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137

A

2x3

B

2x3

C

2x3
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A + 0 = 0 + A = A

A + (-A) = 0 (where –A is the matrix composed of –aij as elements)
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SCALAR MULTIPLICATION OF MATRICES

Matrices can be multiplied by a scalar (constant or single 

element)

Let k be a scalar quantity; then

kA = Ak

Ex.  If k=4 and 
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Properties:

• k (A + B) = kA + kB

• (k + g)A = kA + gA

• k(AB) = (kA)B = A(k)B

• k(gA) = (kg)A
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MULTIPLICATION OF MATRICES

The product of two matrices is another matrix

Two matrices A and B must be conformable for multiplication to 

be possible

i.e. the number of columns of A must equal the number of rows 

of B

Example.

A     x     B   =      C

(1x3)     (3x1)      (1x1)
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B   x    A      =     Not possible!

(2x1)   (4x2)

  A    x    B         =    Not possible!

(6x2)    (6x3)

Example

 A      x       B        =    C

(2x3)        (3x2)         (2x2)



Matrices - Operations



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aaa
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22322322221221

21312321221121

12321322121211

11311321121111

)()()(

)()()(

)()()(

)()()(

cbababa

cbababa

cbababa

cbababa

=++

=++

=++

=++

Successive multiplication of row i of A with column j of 

B – row by column multiplication
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
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35

26

84
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
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Remember also:

IA = A
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
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5763
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


=

5763

2131
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Assuming that matrices A, B and C are conformable for 

the operations indicated, the following are true:

1. AI = IA = A

2. A(BC) = (AB)C = ABC   -    (associative law)

3. A(B+C) = AB + AC   -   (first distributive law)

4. (A+B)C  =  AC  + BC  -  (second distributive law)

Caution!

1. AB not generally equal to BA, BA may not be conformable

2. If AB = 0, neither A nor B necessarily = 0

3. If AB = AC, B not necessarily = C
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AB not generally equal to BA, BA may not be conformable
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If AB = 0, neither A nor B necessarily = 0









=









−−









00

00
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00
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TRANSPOSE OF A MATRIX

If :

2 3

2 4 7

5 3 1
A



 
=  
 

3 2

2 5

4 3

7 1

TA



 
 

=
 
  

Then transpose of A, denoted AT is:

T

jiij aa = For all i and j
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Properties of transposed matrices:

1. (A+B)T = AT + BT

2. (AB)T = BT AT

3. (kA)T = kAT

4. (AT)T = A
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1. (A+B)T = AT + BT










−−
=









−−
+









−

−

972

588

324

651

652

137

















−

−

95

78

28

















−

−

=

















−

−

+

















−

−

95

78

28

36

25

41

61

53

27



Matrices - Operations

(AB)T = BT AT

 

   

1
1 1 0 2

1 2 8
0 2 3 8

2

1 0

1 1 2 1 2 2 8

0 3

 
    

=     
     

 
 

=
 
  
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SYMMETRIC MATRICES

A Square matrix is symmetric if it is equal to its 

transpose:

A = AT









=









=

db

ba
A

db

ba
A

T
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When the original matrix is square, transposition does not 

affect the elements of the main diagonal









=









=

db

ca
A

dc

ba
A

T

The identity matrix, I, a diagonal matrix D, and a scalar matrix, K, 

are equal to their transpose since the diagonal is unaffected.
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INVERSE OF A MATRIX

Consider a scalar k.  The inverse is the reciprocal or division of 1 

by the scalar.

Example:

k=7 the inverse of k or k-1 = 1/k = 1/7

Division of matrices is not defined since there may be AB = AC 

while B = C

Instead matrix inversion is used.  

The inverse of a square matrix, A, if it exists, is the unique matrix 

A-1 where:

AA-1  = A-1 A = I
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Example:

1

3 1

2 1

1 1

2 3

A

A−

 
=  
 

− 
=  

− 









=









−

−

















=

















−

−

10

01

32

11

12

13

10

01

12

13

32

11
Because:
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Properties of the inverse:

11

11

11

111

1
)(

)()(

)(

)(

−−

−−

−−

−−−

=

=

=

=

A
k

kA

AA

AA

ABAB

TT

A square matrix that has an inverse is called a nonsingular matrix

A matrix that does not have an inverse is called a singular matrix

Square matrices have inverses except when the determinant is zero

When the determinant of a matrix is zero the matrix is singular
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DETERMINANT OF A MATRIX

To compute the inverse of a matrix, the determinant is required

Each square matrix A has a unit scalar value called the 

determinant of A, denoted by det A or |A|

56

21

56

21

=









=

A

AIf

then
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If A = [A] is a single element (1x1), then the determinant is 

defined as the value of the element

Then |A| =det A =  a11

If A is (n x n), its determinant may be defined in terms of  order 

(n-1) or less.
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MINORS
If A is an n x n matrix and one row and one column are deleted, 

the resulting matrix is an (n-1) x (n-1) submatrix of A.  

The determinant of such a submatrix is called a minor of A and 

is designated by mij , where i and j correspond to the deleted

 row and column, respectively.

mij is the minor of the element aij in A.
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















=

333231

232221

131211

aaa

aaa

aaa

A

Each element in A has a minor

Delete first row and column from  A . 

The determinant of the remaining 2 x 2 submatrix is the minor 

of a11

eg.

3332

2322

11
aa

aa
m =
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Therefore the minor of a12 is:

And the minor for a13 is:

3331

2321

12
aa

aa
m =

3231

2221

13
aa

aa
m =
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COFACTORS

The cofactor Cij of an element aij is defined as:

ij

ji

ij mC +−= )1(

When the sum of a row number i and column j is even, cij = mij and 

when i+j is odd, cij =-mij

1313

31

13

1212

21

12

1111

11

11

)1()3,1(

)1()2,1(

)1()1,1(

mmjic

mmjic

mmjic

+=−===

−=−===

+=−===

+

+

+
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DETERMINANTS CONTINUED

The determinant of an n x n matrix A can now be defined as

nncacacaAA 1112121111det +++== 

The determinant of A is therefore the sum of the products of the 

elements of the first row of A and their corresponding cofactors.

(It is possible to define |A| in terms of any other row or column 

but for simplicity, the first row only is used)
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Therefore the 2 x 2 matrix :









=

2221

1211

aa

aa
A

Has cofactors :

22221111 aamc ===

And:
21211212 aamc −=−=−=

And the determinant of A is: 

2112221112121111 aaaacacaA −=+=
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Example 1:









=

21

13
A

5)1)(1()2)(3( =−=A
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For a 3 x 3 matrix:

















=

333231

232221

131211

aaa

aaa

aaa

A

The cofactors of the first row are:

31223221

3231

2221

13

31233321

3331

2321

12

32233322

3332

2322

11

)(

aaaa
aa

aa
c

aaaa
aa

aa
c

aaaa
aa

aa
c

−==

−−=−=

−==
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The determinant of a matrix A is:

2112221112121111 aaaacacaA −=+=

Which by substituting for the cofactors in this case is:

)()()( 312232211331233321123223332211 aaaaaaaaaaaaaaaA −+−−−=



Matrices - Operations

Example 2:

















−

=

101

320

101

A

4)20)(1()30)(0()02)(1( =+++−−=A

)()()( 312232211331233321123223332211 aaaaaaaaaaaaaaaA −+−−−=



Matrices - Operations
ADJOINT MATRICES

A cofactor matrix C of a matrix A is the square matrix of the same 

order as A in which each element aij is replaced by its cofactor cij . 

Example:










−
=

43

21
A










−
=

12

34
C

If

The cofactor C of A is



Matrices - Operations

The adjoint matrix of A, denoted by adj A, is the transpose of its 

cofactor matrix
TCadjA=

It can be shown that:

A(adj A) = (adjA) A = |A| I

Example:








 −
==

=−−=










−
=

13

24

10)3)(2()4)(1(

43

21

TCadjA

A

A



Matrices - Operations

IadjAA 10
100

010

13

24

43

21
)( =








=







 −









−
=

IAadjA 10
100

010

43

21

13

24
)( =








=









−







 −
=



Matrices - Operations

USING THE ADJOINT MATRIX IN MATRIX INVERSION

A

adjA
A =−1

Since 

AA-1  = A-1 A = I

and

A(adj A) = (adjA) A = |A| I

then



Matrices - Operations

Example








 −
=







 −
=−

1.03.0

2.04.0

13

24

10

11A










− 43

21
A = 

To check AA-1  = A-1 A = I

IAA

IAA

=







=









−







 −
=

=







=







 −









−
=

−

−

10

01

43

21

1.03.0

2.04.0

10

01

1.03.0

2.04.0

43

21

1

1



Matrices - Operations

Example 2

















−

−

=

121

012

113

A

|A| = (3)(-1-0)-(-1)(-2-0)+(1)(4-1) = -2

),1(

),1(

),1(

31

21

11

−+=

−−=

−+=

c

c

c

The determinant of A is

The elements of the cofactor matrix are

),2(

),4(

),2(

32

22

12

−−=

−+=

−−=

c

c

c

),5(

),7(

),3(

33

23

13

+=

−=

+=

c

c

c



Matrices - Operations

















−

−−

−

=

521

741

321

C

The cofactor matrix is therefore

so

















−

−

−−

==

573

242

111
TCadjA

and

















−−

−−

−

=

















−

−

−−

−
==−

5.25.35.1

0.10.20.1

5.05.05.0

573

242

111

2

11

A

adjA
A



Matrices - Operations

The result can be checked using

AA-1  = A-1 A = I

The determinant of a matrix must not be zero for the inverse to 

exist as there will not be a solution

Nonsingular matrices have non-zero determinants

Singular matrices have zero determinants



Matrix Inversion

Simple 2 x 2 case



Simple 2 x 2 case

Let









=

dc

ba
A

and









=−

zy

xw
A 1

Since it is known that

A A-1 = I

then









=

















10

01

zy

xw

dc

ba



Simple 2 x 2 case

Multiplying gives

1

0

0

1

=+

=+

=+

=+

dzcx

dycw

bzax

byaw

bcadA −=

It can simply be shown that



Simple 2 x 2 case

thus

A

d

bcda

d
w

d

cw

b

aw

d

cw
y

b

aw
y

=
−

=

−
=

−

−
=

−
=

1

1



Simple 2 x 2 case

A

b

bcda

b
x

d

cx

b

ax

d

cx
z

b

ax
z

−=
+−

=

−
=

−

−
=

−
=

1

1



Simple 2 x 2 case

A

c

cbad

c
y

c

dy

a

by

c

dy
w

a

by
w

−=
+−

=

−
=

−

−
=

−
=

1

1



Simple 2 x 2 case

A

a

bcad

a
z

c

dz

a

bz

c

dz
x

a

bz
x

=
−

=

−
=

−

−
=

−
=

1

1



Simple 2 x 2 case

So that for a 2 x 2 matrix the inverse can be constructed 

in a simple fashion as










−

−
=



















− ac

bd

A

A

a

A

c

A

b

A

d

1

•Exchange elements of main diagonal

•Change sign in elements off main diagonal

•Divide resulting matrix by the determinant

=







=−

zy

xw
A 1



Simple 2 x 2 case

Example 










−

−
=









−

−
−=









=

−

2.04.0

3.01.0

24

31

10

1

14

32

1A

A

Check inverse

A-1 A=I

I=







=

















−

−
−

10

01

14

32

24

31

10

1



Matrices and 
Linear Equations



Linear Equations
Linear equations are common and important for survey 

problems

Matrices can be used to express these linear equations and 

aid in the computation of unknown values

Example

n equations in n unknowns, the aij are numerical coefficients, 

the bi are constants and the xj are unknowns

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

=+++

=+++

=+++









2211

22222121

11212111



Linear Equations

The equations may be expressed in the form

AX = B

where

,,
2

1

11

22221

11211



















=



















=

nnnnn

n

n

x

x

x

X

aaa

aaa

aaa

A











and



















=

nb

b

b

B


2

1

n x n n x 1 n x 1

Number of unknowns = number of equations = n



Linear Equations

If the determinant is nonzero, the equation can be solved to produce 

n numerical values for x that satisfy all the simultaneous equations

To solve, premultiply both sides of the equation by A-1 which exists 

because |A| = 0

A-1 AX = A-1 B

Now since
A-1 A = I

We get
X = A-1 B

So if the inverse of the coefficient matrix is found, the unknowns, 

X would be determined



Linear Equations

Example

32

12

23

321

21

321

=−+

=+

=+−

xxx

xx

xxx

The equations can be expressed as

















=

































−

−

3

1

2

121

012

113

3

2

1

x

x

x



Linear Equations

When A-1 is computed the equation becomes

















−=

































−−

−−

−

== −

7

3

2

3

1

2

5.25.35.1

0.10.20.1

5.05.05.0
1BAX

Therefore 

7

,3

,2

3

2

1

−=

−=

=

x

x

x



Linear Equations

The values for the unknowns should be checked by substitution 

back into the initial equations

32

12

23

321

21

321

=−+

=+

=+−

xxx

xx

xxx

3)7()3(2)2(

1)3()2(2

2)7()3()2(3

=−−−+

=−+

=−+−−

7

,3

,2

3

2

1

−=

−=

=

x

x

x
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